Simulation of N2O emissions from a urine-affected pasture in New Zealand with the ecosystem model DayCent
نویسندگان
چکیده
[1] We used the trace gas model DayCent to simulate emissions of nitrous oxide (N2O) from a urine-affected pasture in New Zealand. The data set for this site contained yearround daily emissions of nitrification-N2O (N2Onit) and denitrification-N2O (N2Oden), meteorological data, soil moisture, and at least weekly data on soil ammonium (NH4 ) and nitrate (NO3 ) content. Evapotranspiration, soil temperature, and most of the soil moisture data were reasonably well represented. Observed and simulated soil NH4 + concentrations agreed well, but DayCent underestimated the NO3 concentrations, due possibly to an insufficient nitrification rate. Modeled N2O emissions (18.4 kg N2O-N ha 1 yr ) showed a similar pattern but exceeded observed emissions (4.4 kg N2O-N ha 1 yr ) by more than 3 times. Modeled and observed N2O emissions were dominated by peaks following N-application and heavy rainfall events and were favored under high soil temperatures. The contribution of N2Oden was simulated well except for a 4-week period when waterfilled pore space was overestimated and caused high N2O emissions which accounted for one third of the simulated annual N2O emissions. N2Onit fluxes were overestimated with DayCent because they are calculated as a fixed proportion of NH4 + converted to NO3 , while the data suggest that significant rates of nitrification can occur without inducing significant N2O emissions. The comprehensive data set made it possible to explain discrepancies between modeled and observed values. In-depth model validations with detailed data sets are essential for a better understanding of the internal model behavior and for deriving possible model improvements.
منابع مشابه
DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA
The DAYCENT ecosystem model (a daily version of CENTURY) and an emission factor (EF) methodology used by the Intergovernmental Panel on Climate Change were used to estimate direct and indirect N2O emission for major cropping systems in the USA. The EF methodology is currently used for the USA greenhouse gas inventory but process based models, such as DAYCENT, may yield more reliable results bec...
متن کاملChanges in Denitrification Rate, Bacterial Denitrifier Community Structure and Abundance in Dairy-grazed Pasture Soils Treated with Cattle Urine and Dcd
Urine excreted by cattle can produce very high concentrations of available N in relatively small volumes of soil and lead to high nitrous oxide (N2O) emissions. Application of the nitrification inhibitor dicyandiamide (DCD) can inhibit nitrification. DCD application results in lower nitrate (NO3 ) concentrations and N2O emissions from denitrification in urine affected soils. However, the effect...
متن کاملEnhancing the soil and water assessment tool model for simulating N2O emissions of three agricultural systems
Nitrous oxide (N2O) is a potent greenhouse gas (GHG) contributing to global warming, with the agriculture sector as the major source of anthropogenic N2O emissions due to excessive fertilizer use. There is an urgent need to enhance regional/watershedscale models, such as Soil and Water Assessment Tool (SWAT), to credibly simulate N2O emissions to improve assessment of environmental impacts of c...
متن کاملBiochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches.
Nitrous oxide (N2O) emissions from grazing animal excreta are estimated to be responsible for 1.5 Tg of the total 6.7 Tg of anthropogenic N2O emissions. This study was conducted to determine the in situ effect of incorporating biochar, into soil, on N2O emissions from bovine urine patches and associated pasture uptake of N. The effects of biochar rate (0-30 t ha(-1)), following soil incorporati...
متن کاملA preliminary study to model the effects of a nitrification inhibitor on nitrous oxide emissions from urine-amended pasture
New Zealand’s grazed pastures receive large quantities of nitrogen (N) inputs from animal excreta and chemical fertilisers. While N promotes pasture growth, surplus N can cause environmental problems by leaching into waterways or by nitrifying and denitrifying to form the greenhouse gas, nitrous oxide (N2O). Various approaches have been attempted to mitigate the economic and environmental impac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004